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SIRAN LI

Abstract. We revisit the classical problem by Weyl, as well as its generalisations, concerning

the isometric immersions of S2 into simply-connected 3-dimensional Riemannian manifolds with

non-negative Gauss curvature. A su�cient condition is exhibited for the existence of global

C1,1-isometric immersions. Our developments are based on the framework à la Labourie [14] of

analysing isometric immersions via J-holomorphic curves. We obtain along the way a generali-

sation of a well-known theorem due to Heinz and Pogorelov.

1. Introduction

1.1. The Weyl problem. We are concerned with the problem of the existence of isometric

immersions of a surface (Σ, g) homeomorphic to S2 with intrinsic curvature ≥ K0 into a 3-

dimensional simply-connected Riemannian manifold (M, g) with sectional curvature ≤ K0; here

K0 is any �nite real number. This classical problem was �rst investigated by Weyl [29] in 1916,

for (M, g) being the Euclidean 3-space and K0 = 0. It has played a signi�cant rôle in the

development of geometric analysis and nonlinear PDEs. See [8] for a comprehensive exposition.

ForM = R3, Lewy [14] in 1938 solved the problem for real-analytic metric g with strictly

positive Gauss curvature. Nirenberg proved this result for g ∈ C4 in his seminal 1953 paper [22].

The case g ∈ C3 was later settled by Heinz [11] in 1962. Using di�erent methods, Aleksandrov

and Pogorelov [1, 23] obtained generalised solutions to the Weyl problem by considering limits

of convex polyhedra.

For M = R3 and metric g with non-negative Gauss curvature, Guan�Li [5] proved the

existence of C1,1-isometric immersions for g ∈ C4; also see Hong�Zuily [12]. The case ofM = H3

was settled by Pogorelov [24] for Gauss curvature K > −1, and by Lin�Wang [19] for K ≥ −1;

cf. also Chang�Xiao [3]. For the existence results of general ambient manifolds (M, g) other

than space forms, we refer to Pogorelov [23] and recent works by Guan�Lu [6] and Li�Wang [15].

On the other hand, Burago�Shefel' and Iaia [2, 13] constructed interesting examples for a

topological two-sphere (Σ, g) whose metric is real-analytic and Gauss curvature is positive every-

where except at one point, but does not admit C3-global isometric embeddings into R3. Thus,

there are obstructions to the existence of isometric embeddings/immersions of high regularity.

1.2. The degenerate case. In this paper, we consider a smooth surface (Σ, g) homeomorphic

to S2 and a 3-dimensional simply-connected manifold (M, g) � not required to be a space-

form � such that the Gauss curvature of g is less than or equal to the sectional curvature

of g. We establish one su�cient condition for the existence of a C1,1-isometric immersion f :
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(Σ, g)→ (M, g), formulated in terms of degeneracy/blowup rates for the principal curvatures of

approximate families of elliptic embeddings.

In passing, we remark that in the nice paper [9], Han�Lin obtained a su�cient and necessary

condition for the existence of C∞-isometric embeddings for a family of metrics on T2 into (R3, δ).

The method in [9] relies crucially on rigidity results for surfaces of sign-changing curvatures.

1.3. The main theorem. Our main result of this paper is the following:

Theorem 1.1. Let (Σ, g) be a surface homeomorphic to S2 with intrinsic curvature greater than

or equal to a real number K0. Let (M, g) be a 3-dimensional simply-connected Riemannian

manifold whose sectional curvature is less than or equal to K0. Assume that g, g ∈ C3. Then

one of the following scenarios holds �

(1) Either there exists a degenerate-elliptic C1,1-isometric immersion f : (Σ, g)→ (M, g);

(2) or there are a sequence of smooth metrics {gε} converging to g in the Lipschitz norm as

ε→ 0, and a sequence {f ε} of smooth ε-elliptic isometric immersions of gε into (M, g),

such that at any point where the smaller principal curvature κε1 → 0, the larger principal

curvature κε2 must blow up at a rate no faster than O(1/ 3
√
κε1).

Moreover, in Case (2) above we can bound

κε2(z) ≤ C0

3
√
κε1(z)

for all z ∈ Σ ∼ (κε1)−1{0}, (1.1)

where C0 depends only on ‖g‖C3 and ‖g‖C3.

Our developments are largely based on the framework laid down by Labourie [14], and our

notations and nomenclatures closely follow [14]. In particular, we adopt the following

De�nition 1.2. An isometric immersion f : (Σ, g) → (M, g) is said to be ε-elliptic if the

Gauss curvature of f as in Eq. (1.3) satisfy K ≥ ε > 0 everywhere on Σ. The immersion f or

the immersed surface f(Σ) is elliptic if f is ε-elliptic for some ε. It is degenerate-elliptic

if K ≥ 0 everywhere on Σ. Throughout, K denotes the Gauss curvature of f , namely the

di�erence between the Gauss curvatures of Σ and f#(TΣ).

We use f# and f# to denote the pushforward and pullback under f , respectively.

1.4. Roadmap. To illustrate the point of Theorem 1.1 and the strategy for its proof, the fol-

lowing discussions are presented.

In order to �nd an isometric immersion (Σ, g) → (M, g), one natural approach is to �rst

approximate the metric g by smooth metrics {gε} with Gauss curvatures Kε ≥ ε > 0. This can

be done, for example, by a conformal change of metrics together with a molli�cation (see [5]; also

see the proof of Theorem 1.1 below). Then, by the existence results for strictly positively curved

metrics (cf. Pogorelov [23], Labourie [14], Lin [18], etc.), each gε admits an smooth isometric

immersion f ε into (M, g). So it remains to investigate if one can pass to the limits for {f ε}.

Here enter the crucial insights by Labourie [14]. Throughout this paragraph let us drop all

the super-/subscripts ε for notational simplicity. Let f be an ε-elliptic isometric immersion. Its
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1-jet can be viewed as a pseudo-holomorphic map from Σ into the �bre bundle

E := Isom(TΣ, TM)yπ
Σ×M.

For ξ ∈ E, the tangent space TξE splits into V ⊕U, of which the important component is

V =
{

Ξ(u, v) :=
(
u, ξ(u), Kξ(v)

)
: u, v ∈ TΣ

}
, (1.2)

equipped with the almost complex structure J |V : Ξ(u, v) 7→ Ξ(v,−u). For an isometric immer-

sion f ε : (Σ, g) → (M, g) we take ξ = df = f#. Throughout K denotes the (relative) Gauss

curvature, i.e.,

K := K(f#TΣ)−K(Σ) ≡ k2. (1.3)

(We use the symbol k in accordance with [14].) Then, for the 1-jet of f ,

j1f(Σ) ⊂ V ⊂ {ξ ∈ E : k(ξ) > 0}.

In addition, V is calibrated in the following sense: there is a 1-form ϕ de�ned on some neigh-

bourhood of j1f(Σ), such that

dϕ
(
x, J |V(x)

)
> 0.

See [14], 2.10; also cf. Harvey�Lawson [10] for calibration. Thanks to the calibration ϕ, it

follows from le lemme de Schwarz à la Gromov (see [4]; McDu��Salamon [21]) that if j1f(Σ) is

precompact, then j1f is smooth with uniformly bounded derivatives of all orders. Note that by

[14], 2.6, the compactness in V is understood with respect to the following Hermitian metric µ:

µ
(

Ξ(u1, v1),Ξ(u2, v2)
)

:= kg(u1, u2) + kg(v1, v2), (1.4)

where g is the metric on Σ in consideration.

For all the above to hold, we need (M, g) to be simply-connected and to have sectional

curvature ≤ K0. Nevertheless, it does not have to be a space form.

Let us apply the above arguments to {gε} to get smooth isometric immersions {f ε}. When

the extrinsic geometries � namely, the mean curvatures Hε � of {f ε} are uniformly bounded

independent of ε, by Arzelà�Ascoli's theorem one may pass to the limits to obtain a C1,1-isometric

immersion.

It remains to consider the case when the mean curvatures are not uniformly bounded. The

blowup of mean curvatures only occurs in the limiting process ε→ 0, i.e., when the isometrically

immersed surfaces f ε(Σ) ⊂ M lose strict ellipticity. In this case, the Gauss curvatures tend to

zero, while the mean curvatures blow up to in�nity.

Our crucial observation is Theorem 3.1 below: in the above degenerate scenarios, the

product of mean curvatures and the square root of the Gauss curvatures remains bounded:

Hε ·
√
Kε ≤ b0. (1.5)

The constant b0 depends only on the supremum of Kε over Σ, which is bounded by the supremum

of the Gauss curvature K of (Σ, g).

The bound (1.5) is proved by PDE methods. In Section 2 we recall a �rst-order PDE,

namely Eq. (3.1), on mean curvature H, or on the inverse of mean curvature W := H−1, derived

by Labourie in 2.13 Lemme, [14]. Then, in Section 3, by taking another exterior derivative to
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Eq. (3.1) we get a second-order elliptic equation of the divergence form, whose lower-order terms

satisfy good estimates. Such estimates allow us to prove a Harnack inequality for W , on the set

where W is less than a uniform constant times k. Most importantly, this Harnack estimate is

independent of the parameter ε for the elliptic regularisation {f ε}.

With the aforementioned preparations, we complete the proof of Theorem 1.1 in Section 4.

In particular, Eq. (1.5) can be readily translated into a comparison result between degener-

acy/blowup rates of the two principal curvatures.

Our arguments also lead to new results in the non-degenerate case, i.e., when k2 > 0

strictly. The aforementioned Harnack estimates allow us to deduce the existence of isometric

immersions for g and g only in C3. This generalises the classical results of Heinz [11] and

Pogorelov [23] (also see F.-H. Lin [18]) for the ambient manifoldM being a space form.

1.5. A su�cient condition. To conclude the introduction, we paraphrase Theorem 1.1 into a

criterion for the existence of degenerate-elliptic isometric immersions.

Corollary 1.3. Let (Σ, g) be a surface homeomorphic to S2 with curvature greater than or equal

to a real number K0. Let (M, g) be a 3-dimensional simply-connected Riemannian manifold

whose sectional curvature is less than or equal to K0. Suppose g, g ∈ C3. Assume that for any

smooth isometric immersions {f ε} of the ε-elliptic regularisations {gε} of g,

• either the mean curvatures Hε are uniformly C0-bounded;

• or on the set where Hε blows up in the limit, there holds

κε2 · 3
√
κε1 −→ +∞ as ε→ 0.

Then {f ε} converges to a C1,1-degenerate-elliptic isometric immersion f : (Σ, g) →
(M, g).

Remark 1.4. The results of this paper are global in nature, as the local existence of isometric

immersions for (Σ, g) into (R3, δ) with Kg ≥ 0 is known for su�ciently regular metrics. See

C.-S. Lin [17] and Han [7].

2. A first-order PDE for mean curvature

In this section f : (Σ, g) → (M, g) is an ε-elliptic isometric immersion. For notational

convenience here we drop the super-/subscript ε. Let J, J̃ ∈ End(TΣ) be the almost complex

structure on Σ with respect to the second and the �rst fundamental forms, respectively. By the

ellipticity of f , the second fundamental form II is indeed a metric.

We shall view the mean curvature H of f as de�ned on a subset of the 1-jet bundle:

H : D ≡ j1f ◦ γ(∆) ⊂ J1(Σ,M) −→ R,

where γ is a conformal map from the unit disc ∆ to an open subset of Σ, and j1f is the 1-jet of

the ε-elliptic isometric immersion f , namely that

j1f(x) :=
(
f(x), f#|x = dxf

)
.

For the principal curvatures κ1 and κ2 with respect to the isometric immersion f , we have

H = κ1+κ2
2 and K = k2 = κ1κ2. Recall that K ≥ ε by ε-ellipticity. Let ω ∈ A1(TΣ) be
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the connection form associated to the principal directions corresponding to κ1 and κ2. Then

π#
Σω ∈ A1(J1(Σ,M)). Throughout, Ap(X) denotes di�erential p-forms over bundle X.

One ingenious observation by Labourie ([14], 2.12, 2.13, and 3.6) is that, thanks to the

Gauss�Codazzi equations of isometric immersions, we can derive a �rst-order PDE for H:

dH ◦ J = Hβ + π#
Σω(H2 − 4k2). (2.1)

Here πΣ is the projection from TE onto TΣ, and π#
Σ is the pullback operator under this projection.

β ∈ A1(J1(Σ,M)) depends only on π, k, and operators L1, L2, where

L1

(
Ξ(u, v)

)
:= kΞ(0, u)

and

L2

(
Ξ(u, v),Ξ(w, q)

)
:= kΞ

(
0,−J0Ru(w)

)
,

where the almost complex structure J0 is given by

J0(u) := ν ∧ u

for ν being the outward unit normal vector�eld along f(Σ) ⊂M and ∧ being the cross product

of vector�elds, and Ru is given by

Ru(v) := R(u, v)ν + J0R(u, J0v)ν,

with R being the Riemann curvature tensor of (Σ, g).

3. Weyl's estimate via Harnack

This section is dedicated to the proof of the following �dichotomy theorem�. As before, H

and k2 are the mean and Gauss curvatures, respectively. Again, for notational convenience we

shall drop the super-/subscripts ε in this section.

Theorem 3.1. Let (Σ, g) be a surface homeomorphic to S2 with curvature strictly larger than

a real number K0. Let (M, g) be a 3-dimensional simply-connected Riemannian manifold whose

sectional curvature is less than or equal to K0. Let f : (Σ, g)→ (M, g) be an ε-elliptic isometric

immersion. Then the following holds:

There are two �nite numbers a0 and b0, with a0 depending only on {‖g‖C3 , ‖g‖C3} and b0
depending only on {‖g‖C2 , ‖g‖C2}, such that for any a ≥ a0 exactly one of the following holds:

• maxx∈ΣH(x) ≤ a;
• H(x) > a at some point but, simultaneously, H(x)k(x) ≤ b0.

Remark 3.2. We may view Theorem 3.1 as a variant of the Weyl's estimate, which bounds the

extrinsic geometry by the intrinsic geometry.

Notably, in [5] Guan�Li obtained for the isometric embedding of (Σ, g) into (R3, δ) that

max
Σ

H .

…
max

Σ

(
K2 − 3

2
∆gK

)
,

which involves up to two derivatives of K, namely C4-bounds for g. This leads to the proof for

the existence of C1,1-isometric embeddings of (Σ, g) into (R3, δ) for g ∈ C4. Here we need only

up to one derivative of K, but we cannot get uniform bounds independent of ε.
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Also see Lu [20], Theorem 1.3, for which only C2,Dini-bounds on g are needed, subject to

the assumption K > 2K0 where (M, g) is the space form of constant curvature K0 ∈ R.

Proof. We consider the inverse of the mean curvature, namely

W :=
1

H
.

Our goal is to prove that

min
Σ
W ≥ c > 0

for some constant c depending on K and dK only. This is achieved by establishing a Harnack

estimate for W .

Dividing by H2 on both sides of Eq. (2.1), we �nd that W satis�es a �rst-order PDE:

−dW ◦ J̃ = Wβ + π#
Σω(1− 4k2W 2). (3.1)

See Labourie [14], 3.6 Proposition. The 1-form β is globally de�ned on the 1-jet bundle, and it

depends only on π, k, and the Riemann curvature ofM.

We shall consider

D0 :=
{
z ∈ D : W (z) < δk

}
,

and our objective is to derive a lower bound for W on D0. Choose

δ :=
1

8 (supΣ k)4

so that 1 − 4k2W 2 > 1/2. Note that δ is strictly positive by Gauss�Bonnet, as (Σ, g) is a

non-negatively curved topological S2.

Taking the exterior di�erential to Eq.(3.1), one obtains

−d(dW ◦ J̃) = Wdβ + dW ∧ β + π#
Σ Ω(1− 4k2W 2)

+ 8k2Wπ#
Σω ∧ dk + 8kW 2π#

Σω ∧ dW

=: S(z,W, dW ), (3.2)

where Ω is the curvature form of (Σ, g). Eq. (3.2) is an identity of 2-forms; see [14], p.409 Eq. (2).

By the de�nition for the metric on subbundle V ⊂ E (see Eq. (1.4) above), we have∣∣π#
Σ Ω
∣∣ ≤»k2(|Ω|2Σ + |JΩ|2Σ).

Here the length | • |Σ and the almost complex structure J on Σ are both computed with respect

to the metric II. Thus we have ∣∣π#
Σ Ω
∣∣ ≤ C1kW (3.3)

for a uniform constant C1 depending only on the C2-norm of g and g.

We now substitute into Eq. (3.2) the following relation

π#
Σω =

dW ◦ J̃ −Wβ

1− 4k2W 2
.

Again we need 1− 4k2W 2 > 1/2 on D0 to make sense of this formula. Thus one obtains

S(z,W, dW ) = Wdβ + dW ∧ β + π#
Σ Ω(1− 4k2W 2)

+
8k2W

1− 4k2W 2
(dW ◦ J̃ −Wβ) ∧ dk
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+
8kW 2

1− 4k2W 2
(dW ◦ J̃ −Wβ) ∧ dW.

The above can be estimated pointwise:∣∣S(z,W, dW )
∣∣ ≤ |dβ|W + |β||dW |+ C1kW + 4C1k

3W 3

+ 16k2|dk|W
(
|dW |+ |β|W

)
+ 16kW 2|dW |

(
|dW |+ |β|W

)
,

thanks to Eq. (3.3) and that 1− 4k2W 2 > 1/2 on D0.

As 0 ≤W < δk on D0, we further bound at each z ∈ D0 that∣∣S(z,W, dW )
∣∣ ≤ |dβ|W + |β||dW |+ C1kW + 4C1δ

2k5W

+ 16δk3|dk||dW |+ 16|β|δk3|dk|W

+ 16δ2k3|dW |2 + 16δ3|β|k4|dW |.

Denote by

Λ := sup
z∈Σ

k(z), Λ1 := sup
z∈Σ

k(z)|dk(z)|;

B := sup
z∈Σ
|β(z)|, B1 := sup

z∈Σ
|dβ(z)|.

Thus on D0 we have ∣∣S(z,W, dW )
∣∣ ≤ C2|dW |2 + C3|dW |+ C4|W |, (3.4)

with the constants

C2 = 16δ2Λ3,

C3 = B + 16δΛ2Λ1 + 16δ3BΛ4,

C4 = B1 + C1Λ + 4C1δ
2Λ5 + 16BδΛ2Λ1.

To summarise, we have a second-order elliptic PDE of the divergence form −d(dW ◦J̃) = S,
namely Eq. (3.1). The left-hand side is simply the Laplace-Beltrami of W , due to the presence

of the almost complex structure J̃ . Thus, the bound (3.4) on the source term permits the

application of the classical Harnack estimate; cf. Trudinger [27], Theorem 1.1 and Serrin [25].

Indeed, for any cube Q of edge length 3R inside the open set D0, we have

min
Q

W ≥ C−1
5 max

Q
W, (3.5)

where C5 depends on µ and Rµ;

µ = sup
D0

(C2 + C3 + C4).

Therefore, on D0 we either have W ≡ 0 constantly, or W is non-vanishing everywhere.

• In the former case, by the continuity of W we know that the complement of D0 must

be empty; that is, W ≡ 0 on the whole domain D. But this is impossible in view of the

following result due to Wang�Yau [28] and Shi�Tam [26] (also see Lu [20], Lemma 2.2):

Lemma 3.3. Let (Ω, g) be a 3-dimensional Riemannian manifold with scalar curvature

scal ≥ −6κ2 for some κ > 0. Assume that (Σ = ∂Ω, g) is a topological sphere with scalar
7



curvature scal > −2κ2 and positive mean curvature H. Then Σ can be isometrically

embedded into H3
κ2, the space form with constant negative sectional curvature −κ2.

Moreover, there holds ∫
Σ

(H0 −H) cosh(κr) ≥ 0;

r is the distance function on H3
κ2 from the origin, and H0 is the mean curvature of H3

κ2.

It follows that the total curvature is uniformly bounded:∫
Σ
H ≤

∫
Σ
H cosh(κr) ≤

∫
Σ
H0 cosh(κr) ≤ C6,

where C6 depends only on κ and ‖g‖C2 . In addition, κ can be chosen to depend only on

‖g‖C3 . This rules out the possibility that H blows up everywhere on Σ; or, equivalently,

that W ≡ 0 on the entire D.

• In the latter case, the Harnack estimate (3.5) implies thatW ≥ c7 > 0 on each (3R)-cube

Q ⊂ D0, where c7 depends only on µ and R.

Fixing a small R once and for all and applying a standard covering argument, we get

min
D0

W ≥ c8 max
D0

W

for some c8 > 0 depending only on µ.

On the other hand, by construction we have W ≥ δk on D ∼ D0.

To complete the proof, note that µ depends only on B, B1, Λ, Λ1, C1, and δ. Here Λ1

and B1 altogether depend on up to three derivatives of g and g. On the other hand, C1, B, Λ,

and δ depend on up to two derivatives of g and g. Furthermore, none of the above parameters

depends on ε, i.e., the lower bound for k2.

The assertion follows once we take a0 = (c8)−1 and b0 = δ−1. �

4. Proof of Theorem 1.1

In this section we deduce Theorem 1.1 from the dichotomy Theorem 3.1.

Proof of Theorem 1.1. First of all, as in Guan�Li [5], let us approximate g by a sequence of

C∞-metrics {gε}, which both converges to g in the C3-topology and possesses ε-elliptic isometric

immersions. One may take a conformal change of metrics

gε := e2ελg

for a smooth scalar�eld λ on Σ. Indeed, as the Gauss curvature K̃ε for (Σ, gε) satis�es

−ε∆gλ+ K̃ = K̃εe
2ελ,

where K̃ is the Gauss curvature of g, by imposing −∆gλ = 1 on K−1{0} we can ensure the

strict inequality K̃ε > K0 everywhere on Σ. By Théorème A in Labourie [14], for each such gε

there exists an ε-elliptic isometric immersion fε into (M, ḡ). Furthermore, thanks to le lemme

de Schwarz à la Gromov ([14], 1.2), fε is smooth for each ε > 0.

In the sequel, let us denote by Hε, Kε, κ
ε
1, and κ

ε
2 the mean curvature, the Gauss curvature,

the smaller principal curvature, and the larger principal curvature for fε, respectively. Note that
8



Kε is di�erent from K̃ε in the last paragraph. All these quantities are non-negative, in view of

the ε-ellipticity of fε. One also writes kε :=
√
Kε. Note that {Kε} is uniformly bounded in C0.

In the �rst case, assume that {Hε} is uniformly bounded in C0 by a constant depending

only on the C3-norms of g and g. We can pass to the limits to obtain a C1,1-isometric immersion

that is degenerate-elliptic, thanks to the Arzelà�Ascoli theorem.

Now, let us suppose that H blows up somewhere but not everywhere. For further develop-

ments, it is crucial to note that all the estimates in Theorem 3.1 � in particular, the constant

a0 and b0 � are independent of ε. So this theorem holds verbatim after replacing the data

{f, g,H,K ≡ k2, κ1, κ2} by {fε, gε, Hε,Kε ≡ (kε)
2, κε1, κ

ε
2}, respectively.

Consider a point z ∈ Σ such that Kε(z)→ 0 as ε→ 0. The smaller eigenvalue κε1(z) must

tend to zero. By Theorem 3.1 we have

Hε(z)kε(z) ≤ b0,

where b0 is independent of ε. That is,(
κε1(z) + κε2(z)

)»
κε1(z)κε2(z) ≤ 2b0.

It follows that

κε2(z) ≤

(
4(b0)2

κε1(z)

) 1
3

whenever κε1(z) 6= 0. Here we can choose b0 = 9(supΣ k)4 ≡ 9(supΣK)2 for su�ciently small ε,

thanks to Theorem 3.1.

On the other hand, if z is not a point of degeneracy for the Gauss curvature, then {Hε(z)}
is uniformly bounded from the above by a0, which depends only on ‖g‖C3 and ‖ḡ‖C3 as in

Theorem 3.1. Again, a0 is independent of z. Then, utilising the naïve bound

Hε ≥
…
Kε

2
=

kε√
2
,

it is straightforward to see that

κε2(z) ≤

(
2Hε(z)Kε(z)

κε1(z)

) 1
3

≤
3
√

4a0

3
√
κε1(z)

.

The proof is now complete. �

5. Concluding Remarks

A resolution for the classical Weyl problem follows directly from the proof of Theorem 3.1.

The essential ingredients of the proof are already present in Labourie [14].

Corollary 5.1. Let (Σ, g) be a homeomorphic copy of S2 with Gauss curvature strictly greater

than K0 ∈ R. Let (M, g) be a simply-connected 3-dimensional Riemannian manifold with sec-

tional curvature strictly less than K0. Assume that g, g ∈ C3. Then (Σ, g) can be isometrically

immersed in (M, g) as a C3-surface.

Proof. The same arguments for Theorem 3.1 yield that W ≥ c > 0 on Σ unless W ≡ 0; the

latter is again impossible due to Lemma 3.3. Here c is allowed to depend on lower bound of k2,

which is strictly positive. On the other hand, all the relevant estimates only involve up to three
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derivatives of g and g. This gives a uniform bound on the mean curvature. Here we are working

in the case of strict ellipticity, which is preserved under molli�cations. Thus, we can pass to the

limits to establish the limiting isometric immersion via Arzelà�Ascoli's theorem and deduce the

regularity from le lemme de Schwarz à la Gromov ([14], 1.1 and 1.2). �

Note that we only need g, g ∈ C3 here, which is a weaker assumption than that in Nirenberg

[22] (C4), and Pogorelov [23] and Lin [18] (C3,α). By di�erent approaches Heinz [11] also proved

for g ∈ C3. The above works also assume that (M, g) is a space form. Recently, Lu [20] proved

for g ∈ C2,Dini by re�ning the estimates in [11].

On the other hand, we bring to the attention of the readers to the following problem

of Guan�Li, which is concerned with su�cient conditions for the existence smooth isometric

immersions/embeddings ([5], p.333 Question 2):

What are the su�cient conditions (even necessary and su�cient conditions) on

the metric with nonnegative Gauss curvature which give rise to a smooth isometric

embedding into (R3, δ)? [δ is the Euclidean metric.]

It remains open in view of the counterexamples by Burago�Shefel' and Iaia [2, 13].
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