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Summary

We establish the regularity of weak solutions for the vorticity equation associated to a family of
desingularized models for vortex filament dynamics in 3D incompressible viscous flows. These
generalize the classical model ‘of an allowance for the thickness of the vortices’ due to Louis
Rosenhead in 1930. Our approach is based on an interplay between the geometry of vorticity and
analytic inequalities in Sobolev spaces.

1. Introduction

1.1 The PDE for vorticity

In this article, we study the regularity issues of vortex filament dynamics in an incompressible viscous
fluid in R3. The vorticity ω is a vectorfield of physical significance: it measures the ‘size of rotations’
in the fluid and plays a central rôle in the regularity theory of the fluid flow (cf. Wolibner (1) and
Yudovich (2)).

The dynamics of ω is described by the following partial differential equations (PDE):

∂ω

∂t
+ (u · ∇)ω − ν�ω = S · ω in [0,T�[×R3. (1.1)

Here,ω : [0,T�[×R3 → R3 is the vorticity, u : [0,T�[×R3 → R3 is the velocity, the constant ν > 0
is the kinematic viscosity, and S = S(u) : [0,T�[×R3 → R3 ⊗ R3 is the rate-of-strain tensor of the
fluid, defined as

S := 1

2

(∇u + ∇�u
)
. (1.2)

Equation (1.1) is supplemented by the incompressibility condition

div u = 0 in [0,T�[×R3 (1.3)

and the initial condition
ω|{t = 0} = ω0 on {0} × R3. (1.4)
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1.2 Vortex filaments

Our work is concerned with models of line vortices and vortex filaments. Related physical notions
and mathematical models are summarized in Sections 1.2–1.4, which are essentially taken from
Section 2 in Berselli–Gubinelli (3).

A line vortex is a singular distribution in which infinite vorticity is concentrated on a curve γ , such
that the circulation � > 0 around a closed circuit threaded by γ is finite. � is called the strength of
the line vortex. One may view a line vortex as obtained via the limiting process of pinching a vortex
filament—that is, a vortex tube surrounded by the fluid—to the curve γ , with the strength being kept
constant (cf. Helmholtz (4)).

We consider the case that the curve supporting the vorticity is a knot, that is, a smooth simple
closed curve γ : [0, 1] → R3 with γ (0) = γ (1). Throughout γ is identified with its image.

Formally, the vorticity vectorfield ω is given by (2.4) in (3):

ω(t, x) = �

∫ 1

0
δ
(
x − γ (t, ξ )

)
γξ (t, ξ ) dξ for each x ∈ R3, t ∈ [0,T�[. (1.5)

Here, δ is the Dirac delta function, ξ ∈ [0, 1] is the arclength parameter, and γξ = ∂γ /∂ξ . In measure-

theoretic notations, we write ω(t, x) = �
∫ 1

0 γξ (t, ξ ) dμ(ξ ), with the measure μ being the restriction
of the one-dimensional Hausdorff measure to the curve: μ ≡ H1 {x = γ (t, •)}.

1.3 Biot–Savart laws

As is well-known, for the Navier–Stokes and Euler equations, the vorticityω is related to the velocity
u of the fluid via

ω = curl u = ∇ ∧ u. (1.6)

In R3 one may represent the operator curl−1 as a singular integral:

u(t, x) = − 1

4π

∫
R3

x − y

|x − y|3 ∧ ω(t, y) dy. (1.7)

Such a relation is known as a Biot–Savart law.
Consider the case of a line vortex. Assuming that the knot γ is transported by the velocity

vectorfield, one may deduce from (1.5) and (1.7) that

∂γ

∂t
(t, ξ ) = − �

4π

∫ 1

0

γ (t, ξ ) − γ (t, η)

|γ (t, ξ ) − γ (t, η)|3 ∧ γη(t, η) dη; (1.8)

see (3, 5, 6). Near the diagonal {ξ = η} ⊂ [0, 1] × [0, 1] the PDE (1.8) is highly singular.

1.4 Rosenhead approximation

In 1930, Rosenhead (7) proposed and analytically studied a desingularized model for (1.8). The
paper (7) begins as such:

This article is an attempt to investigate the effect on the configuration of vortices in
the wake behind a cylinder of an allowance for the thickness of the vortices...
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The idea of Rosenhead’s approximation is to smear out the singularity of (1.8) on the diagonal by
considering the desingularized vortex equation:

∂γ

∂t
(t, ξ ) = − �

4π

∫ 1

0

γ (t, ξ ) − γ (t, η)[(
γ (t, ξ ) − γ (t, η)

)2 + μ2
]3/2

∧ γη(t, η) dη (1.9)

for some constant μ > 0. See also Moore (8) for an application of this model in numerical
computations for aircraft trailing vortices.

In effect, one may view Rosenhead’s desingularized model (1.9) as obtained via a modified Biot–
Savart law. As in (3, 5), (1.9) amounts to expressing u in terms of ω by

u(t, x) = − 1

4π

∫
R3

∇φ(x − y) ∧ ω(t, y) dy, (1.10)

with the potential φ : [0,T�[×R3 → R given by

φ(z) = �√|z|2 + μ2
. (1.11)

Note that φ(z) becomes completely regular as |z| → 0.
One should compare Rosenhead’s model with the usual Biot–Savart law for u = curl−1ω, namely

(1.7). The latter equation can be obtained from (1.11) by setting μ = 0.

1.5 Partial desingularizations

Our main goal is to investigate ‘partially desingularized’ models for (1.8). We shall analyze the
Biot–Savart law (1.10) with the potential

φδ(z) = �√|z|2 + μ2|z|δ
for a positive parameter δ. (1.12)

In the case 0 < δ < 2, we obtain a desingularized model which is more singular than Rosenhead’s
approximation (δ = 0) in (1.10), (1.11) and (1.9), but less singular than u = curl−1ω (δ = 2).

Using methods pioneered by Constantin–Fefferman (9) in the study of geometrical regularity
criteria for the Navier–Stokes equations, we establish the regularity of weak solutions for the vorticity
equation (1.1), under the partially desingularized Biot–Savart laws (1.12) with

0 ≤ δ < 1.

The precise statement of our results are given in Section 2.

1.6 Related works

For the background on the mathematical analysis of fluid dynamical PDEs, we refer to Constantin–
Foias (9), Temam (10), Ladyzhenskaya (11), Lemarié-Rieusset (12), Seregin (6), Galdi (13),
Robinson–Rodrigo–Sadowski (14), and many others.
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The dynamics of vortices is an important topic in aero- and hydro-dynamics; see Saffman (6) and
Chorin (15) for a comprehensive treatment. The existence, uniqueness and stability properties of
various PDE models for vortex dynamics have been studied; cf. Banica–Vega (16), Aiki–Iguchi (17),
Jerrard–Seis (18), Lions–Majda (19), etc. The study of vortex dynamics in incompressible viscous
fluid flows attracts much attention in recent works; cf. Enciso–Lucà–Peralta-Salas (20).

Regarding the Rosenhead model, a rigorous analytic study was first carried out by Berselli–Bessaih
(5). It is extended to more general stochastic contexts by Bessaih–Gubinelli–Russo (21); see also
Flandoli (22).

The global existence of the smooth solution for (1.1) and (1.12) was proved by Berselli–Gubinelli
(3) under a few mild assumptions on the Fourier side of the potential φ in the Biot–Savart law;
see ‘Hypothesis A’ on p.698 therein. The results in (3) cover a wide range of desingularized
models for vortex filament dynamics with modified Biot–Savart laws, including the Rosenhead
approximation. In this article, we are concerned with desingularized models of a different nature: the
desingularization effects take place on the physical side of φ. The potentials considered in Section
1.5 (see (1.12)) appear to be still more singular at the singularity z = 0.

The key new feature of this article is to apply ideas and techniques from the works on geometric
regularity criteria for the Navier–Stokes equations to analyze the desingularized models for vortex
filament dynamics. First proposed by Constantin–Fefferman (9), the geometric regularity criteria
can be summarized as follows (here the vorticity and velocity are related by the usual Biot–Savart
law (1.7)): ‘If for all t ∈ [0,T�[ the angle between the vorticity vectorfield of a weak solution for
the Navier–Stokes equations at nearby points satisfies certain uniform Hölder conditions in space,
then it is automatically strong up to the time T�’. Such criteria have been further developed in many
works; see, for example, (13, 23–38). This list is by no means exhaustive.

Finally, intriguing linkages between topological/differential geometric works on knot energies and
analytic studies on line vortex dynamics deserve further explorations. Such linkages are suggested
by (1.8). We refer to Freedman–He–Wang (39) and O’Hara (40) for knot energies.

2. Main result

2.1 Theorem

The main result of our article is as follows. For the convenience of readers, we reproduce (1.1),
(1.10) and (1.12) in the statement below.

Let ω ∈ L∞(0,T�; L1 ∩ W−1,2(R3; R3)) ∩ L2(0,T�; L2(R3; R3)) be a weak
solution for the vorticity equation:

∂ω

∂t
+ (u · ∇)ω − ν�ω = S · ω in [0,T�[×R3.

Assume that u is related to ω via the modified Biot–Savart law:

u(t, x) = − 1

4π

∫
R3

∇φδ(x − y) ∧ ω(t, y) dy

where, for positive constants � and μ,

φδ(z) = �√|z|2 + μ2|z|δ
.
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Furthermore, assume that {ω(t, •)}t∈[0,T �[ is supported on a compact set in R3.
Then, the vorticity ω has higher regularity as follows: ω ∈ L∞(0,T�; L2(R3; R3)) ∩
L2(0,T�; W1,2(R3; R3)) whenever δ ∈ [0, 1[.

2.2 Remark

The assumption ω ∈ L∞(0,T�; L1(R3; R3)) is due to the uniform boundedness of total circulation.
We put

�0 := sup
0≤t<T �

∫
R3

|ω(t, x)| dx < ∞. (2.1)

Compactness of the support for {ω(t, •)}t∈[0,T �[ means that the vortex filament does not become
infinitely large up to time T�. These agree with the discussions in Section 1.2 on the physical model.

In this article, weak solutions are understood in the distributional sense as usual; for example,
for the vorticity equation (1.1), one needs to integrate against arbitrary test functions of the form
ψ(t)χ (x) for φ ∈ C∞

0 (] − 1,T�[) and χ ∈ C∞
c (R3). The local-in-time existence of weak solutions

can be obtained by adapting the Galerkin approximation scheme for the Navier–Stokes equations;
see, for example, Temam (10) Chapter III Section 3.

2.3 Strategy of the proof

We represent the rate-of-strain tensor S = S(u) as a singular integral ofω via the modified Biot–Savart
law. Then, we show that the vorticity stretching term

S(t) :=
∫

R3
S(t, x) : ω(t, x) ⊗ ω(t, x) dx (2.2)

can be controlled by the enstrophy

E(t) := 1

2

∫
R3

|ω(t, x)|2 dx. (2.3)

(Throughout, for 3 × 3 matrices n and p we write n : p ≡ tr(n�p).) This is done by exploring the
rôle of the angle 
 (ω(t, x), ω(t, y)) played in the singular integral as in (9).

3. Inequalities

In this section, we summarize a few well-known analytic inequalities.

3.1 Interpolation for Lp

Let p0, p1 be such that 0 < p0 < p1 ≤ ∞. For any 0 ≤ θ ≤ 1 define pθ by 1
pθ

= 1−θ
p0

+ θ
p1

. Then,
for any n = 1, 2, 3, . . . and any f ∈ Lp0 (Rn) ∩ Lp1 (Rn), there holds

‖f ‖Lpθ (Rn) ≤ ‖f ‖1−θ
Lp0 (Rn)‖f ‖θLp1 (Rn).
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3.2 Gagliardo–Nirenberg–Sobolev inequality

Let f : Rn → R. Fix 1 ≤ q, r < ∞ and m = 1, 2, 3, . . .. Suppose that α ∈ R and j ∈ N satisfy

j

m
≤ α ≤ 1,

1

p
= j

n
+

(1

r
− m

n

)
α + 1 − α

q
.

Then there exists a constant C depending only on m, n, j, q, r and α such that

‖Djf ‖Lp(Rn) ≤ C‖Dmf ‖αLr (Rn)‖f ‖1−α
Lq(Rn).

3.3 Hardy–Littlewood–Sobolev inequality

Let f ∈ Lp(Rn) and g ∈ Ls(Rn) with 1 < p, s < ∞. Assume that 0 < λ < n satisfies 1/p + 1/s +
λ/n = 2. Then there is a constant C depending only on p, n and λ such that∣∣∣∣

∫∫
Rn×Rn

f (x)|x − y|−λg(y) dx dy

∣∣∣∣ ≤ C‖f ‖Lp(Rn)‖g‖Ls(Rn).

4. Proof of 2.1 theorem

4.1 Preliminary energy estimate

Multiplying ω to both sides of the vorticity equation (1.1) and integrating over space, we obtain

dE

dt
(t) + ν

∫
R3

|∇ω(t, x)|2 dx = S(t).

The right-hand side is the vorticity stretching term given by (2.2). One should note that this evolution
equation for E is understood in the sense of distributions over [0,T�[.
4.2 Singular integral representation of S

Now we show

Lemma. In the setting of Theorem 2.1, the rate-of-strain tensor S can be represented as

S(x) = p.v.
∫

R3

{
�δ(2 − δ)

4
μ2A− 3

2 (|x − y|) · |x − y|δ−4 + 3�

8
B2(|x − y|)A− 5

2 (|x − y|)
}
·

·
{

(x − y) ∧ ω(y) ⊗ (x − y) + (x − y) ⊗ (x − y) ∧ ω(y)

}
dy. (4.1)

Here A,B : [0,∞[→ [0,∞[ are given by

A(r) := r2 + μ2rδ, (4.2)

B(r) := 2 + δμ2rδ−2. (4.3)

Most estimates in this paper hold pointwise in t; so, unless otherwise declared, we always suppress
the t-variable. Throughout p.v. denotes the principal value of singular integrals; for vectors a =
(a1, a2, a3) and b = (b1, b2, b3) ∈ R3, a ⊗ b is the 3 × 3 matrix {aibj}1≤i,j≤3.
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4.3 Proof of 4.2 Lemma

First let us show that

∇u(x) = p.v.
∫

R3
∇∇φδ(x − y) ∧ ω(y) dy, (4.4)

where
(∇∇φδ ∧ ω)j

i ≡ ∇i(∇φδ ∧ ω)j

for i, j ∈ {1, 2, 3}. This is an equality for 3 × 3 matrices.
Indeed, direct computation yields that

∇φδ(z) = −�
2

∇
(
|z|2 + μ2|z|δ

)(
|z|2 + μ2|z|δ

)− 3
2

= −�
2

(
2z + δμ2|z|δ−2z

)(
|z|2 + μ2|z|δ

)− 3
2
. (4.5)

It is locally integrable on R3. This enables us to compute the weak Hessian ∇∇φδ via the dominated
convergence theorem as follows.

Take an arbitrary test function χ ∈ C∞
c (R3). The above paragraph ensures that

−〈χ,∇∇φδ〉 = lim
ε↘0

∫
{|x|≥ε}

∇φδ(x) ⊗ ∇χ (x) dx,

where the left-hand side is the paring of a distribution with a test function. In light of integration by
parts and the divergence theorem, it further equals

lim
ε↘0

{
−

∫
{|x|≥ε}

∇∇φδ(x)χ (x) dx +
∫
{|x|=ε}

χ (x)∇φδ(x) ⊗ x

|x| dH2(x)

}
.

For the second term, a change of variable leads to∫
{|x|=ε}

χ (x)∇φδ(x) ⊗ x

|x| dH2(x) = ε2
∫
{|x|=1}

χ (εx)∇φδ(εx) ⊗ x dH2(x).

By the definition of φδ in (1.12), the right-hand side is controlled by C(μ,�)ε2− 3δ
2 ‖χ‖L∞(R3). For

any δ ∈ [0, 1[ this tends to zero as ε ↘ 0; so (4.4) follows.
The previous arguments justify the computation of ∇∇φδ by directly taking ∇ to the final line in

(4.5). In local coordinates, we get

∇i∇jφδ(z) = −�
2

∇i

{
2zj + δμ2|z|δ−2zj

A
3
2 (|z|)

}

= −�
2

A−3(|z|)
{

A
3
2 (|z|)

[
2δ̃ij + δμ2δ̃ij|z|δ−2 + δ(δ − 2)μ2|z|δ−4zizj

]

− 3

2

(
2zj + δμ2zj|z|δ−2

(
A

1
2 (|z|)∇iA(|z|)

)}
.

Here, δ̃ij is the Kronecker delta symbol (lest it gets confused with the parameter δ ∈ [0, 1[).
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Next, note the simple identity
∇iA(|z|) = ziB(|z|),

from which we infer that

∇∇φδ(z) = −�
2

A− 3
2 (|z|)A− 3

2 (|z|)
[
δμ2δ̃ + δ(δ − 2)μ2|z|δ−4z ⊗ z

]
+ 3�

4
A− 5

2 (|z|)B2(|z|)z ⊗ z.

Thus, for some anti-symmetric matrix m ∈ so(3,R), there holds

∇∇φδ(x − y) ∧ ω(y)

= m +
{

(x − y) ∧ ω(y) ⊗ (x − y)

}
·

·
{

− �

2
δ(δ − 2)μ2A− 3

2 (|x − y|)|x − y|δ−4 + 3�

4
A− 5

2 (|x − y|)B2(|x − y|)
}
. (4.6)

We substitute (4.6) into (4.4) to get the singular integral representation for ∇u. The lemma in
Section 4.2 follows immediately by symmetrizing the resulting expression.

4.4 Vorticity stretching term S

The singular integral representation for S in Section 4.2 implies

Lemma. The vorticity stretching term S = ∫
R3 S : ω ⊗ ω dx can be bounded as follows:

|S| ≤
∫

R3
|ω(x)|2

{ ∫
R3

[
K (1)(|x − y|) + K (2)(|x − y|)

]
|ω(y)| dy

}
dx, (4.7)

where

K (1)(r) := �δ(2 − δ)

4
μ2rδ−2A− 3

2 (r), (4.8)

K (2)(r) := 3�

8
r2B2(r)A− 5

2 (r). (4.9)

4.5 Proof of 4.4 Lemma

In Section 4.2, we proved that

S(x) = p.v.
∫

R3

[
K (1)(|x − y|) + K (2)(|x − y|)

]
·

·
{

(x − y) ∧ ω(y) ⊗ (x − y) + (x − y) ⊗ (x − y) ∧ ω(y)

}
dy.
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Following the crucial observations due to Constantin–Fefferman (9), by writing

ẑ := z

|z| for any z ∈ R3,

one may express the vorticity stretching term as

S =
∫

R3
|ω(x)|2

{ ∫
R3

|ω(y)|
[
K (1)(|x − y|) + K (2)(|x − y|)

]
·

·
⎡
⎣x̂ − y ∧ ω̂(y) ⊗ x̂ − y

+
x̂ − y ⊗ x̂ − y ∧ ω̂(y)

⎤
⎦ :

[
ω̂(x) ⊗ ω̂(x)

]}
dx.

But ⎡
⎣x̂ − y ∧ ω̂(y) ⊗ x̂ − y

+
x̂ − y ⊗ x̂ − y ∧ ω̂(y)

⎤
⎦ :

[
ω̂(x) ⊗ ω̂(x)

]
= D

(
x̂ − y, ω̂(x), ω̂(y)

)
,

where for arbitrary unit column vectors e1, e2, e3 ∈ R3 we write

D(e1, e2, e3) := e1 · e3 det(e1|e2|e3).

Thus elementary calculus gives us the pointwise estimate:∣∣∣D(
x̂ − y, ω̂(x), ω̂(y)

)∣∣∣ ≤
∣∣∣ sin 


(
ω(t, x), ω(t, y)

)∣∣∣. (4.10)

We can now conclude 4.4 by naïvely bounding this term by 1.

4.6 Conclusion of the proof

We resume from estimate (4.7) for the vorticity stretching term S. Thanks to (4.2), (4.3), (4.8) and
(4.9), pointwise we have

K (1)(|z|) ≤ �δ(2 − δ)

4μ
|z|−2− δ

2 , (4.11)

K (2)(|z|) ≤ 3�δ2

2μ
|z|−2− δ

2 if |z| ≤
(
δμ2

2

) 1
2−δ
, (4.12)

K (2)(|z|) ≤ 6�

μ5
|z|2− 5δ

2 if |z| ≥
(
δμ2

2

) 1
2−δ
. (4.13)

Indeed, for K (1) we may bound

K (1)(|z|) ≤ �δ(2 − δ)

4

μ2|z|δ−2(|z|2 + μ2|z|δ) 3
2

≤ �δ(2 − δ)

4

μ2|z|δ−2(
μ2|z|δ) 3

2

= �δ(2 − δ)

4μ
|z|−2− δ

2 .
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For K (2), when |z| ≥ (δμ2/2)
1

2−δ one has δμ2|z|δ−2 ≤ 2. It implies that

K (2)(|z|) ≤ 3�

8

|z|2(2 + δμ2|z|δ−2)2(|z|2 + μ2|z|δ) 5
2

≤ 6�
|z|2(|z|2 + μ2|z|δ) 5

2

≤ 6�
|z|2

(μ2|z|δ) 5
2

= 6�

μ5
|z|2− 5δ

2 .

On the other hand, when |z| ≤ (δμ2/2)
1

2−δ there holds δμ2|z|δ−2 ≥ 2. So one infers that

K (2)(|z|) ≤ 3�

8

|z|2(2 + δμ2|z|δ−2)2(|z|2 + μ2|z|δ) 5
2

≤ 3�

8

|z|2 · 4δ2μ4|z|2δ−4(|z|2 + μ2|z|δ) 5
2

≤ 3�

8

|z|2 · 4δ2μ4|z|2δ−4

(μ2|z|δ) 5
2

= 3�δ2

2μ
|z|−2− δ

2 .

Let us also introduce the constants

η := max

{
6�

μ5
,
�δ(2 − δ)

4μ
,

3�δ2

2μ

}
, (4.14)

� := diam2− 5δ
2

(
spt {ω(t, •)}t∈[0,T �[

)
. (4.15)

Applying bounds (4.11), (4.12) and (4.13) on the kernels to (4.7) in Section 4.4, we deduce that

|S| ≤ η�‖ω‖2
L2‖ω‖L1 + η

∫∫
R3×R3

|ω(x)|2|ω(y)||x − y|−2− δ
2 dx dy. (4.16)

Now we invoke the Hardy–Littlewood–Sobolev inequality in 3.2 and take p = 1 + ε, n = 3, and
s = 2 + δ

2 therein, for some ε > 0 to be determined. Then

∣∣∣∣
∫∫

R3×R3
|ω(x)|2|ω(y)||x − y|−2− δ

2 dx dy

∣∣∣∣ ≤ C1‖ω‖2
L2(1+ε)(R3)‖ω‖Ls(R3), (4.17)

where C1 depends only on δ and ε, with the index s = 6(1+ε)
2(1+4ε)−δ(1+ε) .

Recall that δ ∈ [0, 1[; hence, by additionally requiring that ε ∈]0, 1
2 [, we have s ∈] 6

4−δ ,
6

2−δ [.
So we can fix an ε (depending only on δ) in ]0, 1

2 [ once and for all to warrant that 1 < s < 2.
Consequently, one may view s as being fixed from now on. As a result, the constant C1 in the
inequality (4.17) depends only on δ. Then the interpolation in 3.1 gives us

‖ω‖Ls(R3) ≤ ‖ω‖
2
s −1
L1(R3)

‖ω‖2− 2
s

L2(R3)
. (4.18)
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On the other hand, the Gagliardo–Nirenberg–Sobolev inequality in 3.2 implies that

‖ω‖2
L2(1+ε)(R3) ≤ C2‖∇ω‖

3ε
1+ε
L2(R3)

‖ω‖
2−ε
1+ε
L2(R3)

. (4.19)

Here C2 depends only on ε, hence only on δ as in the previous paragraph.
Putting together (4.17), (4.18) and (4.19), one obtains∣∣∣∣

∫∫
R3×R3

|ω(x)|2|ω(y)||x − y|−2− δ
2 dx dy

∣∣∣∣ ≤ C3‖∇ω‖
3ε

1+ε
L2(R3)

‖ω‖2− 2
s + 2−ε

1+ε
L2(R3)

,

where C3 = C1C2(�0)
2
s −1 depends only on δ and the finite total circulation �0 (see (2.1)).

In addition, the simple inequality ab ≤ ap

p + bq

q for 1
p + 1

q = 1, 1< p<∞ and a, b ≥ 0 implies that

∣∣∣∣
∫∫

R3×R3
|ω(x)|2|ω(y)||x − y|−2− δ

2 dx dy

∣∣∣∣ ≤ ν

2
‖∇ω‖2

L2(R3) + C4‖ω‖2κ
L2(R3), (4.20)

where the constant

C4 = 2 − ε

2(1 + ε)

(C3)
2(1+ε)

3ε(
ν
2

) 3ε
2−ε

, (4.21)

and the exponent

κ = (1 + ε)

2 − ε

(
2 − 2

s
+ 2 − ε

1 + ε

)
.

Since s ∈]1, 2[ and ε ∈]0, 1
2 [ (thus 1+ε

2−ε ∈] 1
2 , 1[), it is crucial to see that

1

4
< κ < 2, (4.22)

where κ depends only on δ.
To conclude, we substitute (4.20) and (4.16) into the energy estimate in Section 4.1 to get

dE

dt
+ ν

2
‖∇ω‖2

L2(R3) ≤ η��0E(t) + ηC4E
κ (4.23)

for the enstrophy E(t) = ∫
R3 |ω(t, x)|2 dx. But the hypotheses of the theorem require that E ∈

L2([0,T�[). Hence, in light of (4.22), the differential inequality (4.23) implies that E ∈ L∞([0,T�[)
and that ∇ω ∈ L2([0,T�[×R3; R3 ⊗ R3). This concludes the proof.

5. Concluding remarks

A closer examination on the dependence of constants (see, for example, (4.14), (4.15), (4.21) and
(4.23)) shows that we have obtained an upper bound for

ess supt∈[0,T �[‖ω(t, •)‖2
L2(R3).

This bound is proportional to the strength � of vortex filaments, a positive power of the diameter of
the support of ω, the total circulation �0, a positive power of T� and a positive power of the initial
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enstrophy
∫
R3 |ω0|2 dx. Also, the bound is inverse proportional toμ5 and νς , where ς = 3ε

2−ε ∈]0, 1[
and 0 < μ � 1 (μ is the regularization parameter).

Nevertheless, we cannot directly pass to the inviscid limit by sending ε ↘ 0 (hence ς ↘ 0): it
corresponds to the endpoint case of the Hardy–Littlewood–Sobolev inequality (p = 1 in 3.3).

Meanwhile, we have obtained an upper bound for

‖∇ω(t, •)‖2
L2(R3),

which have the same dependence on all the parameters as for ess supt∈[0,T �[‖ω(t, •)‖2
L2(R3)

, except

that it is inverse proportional to ν1+ς .
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31. Z. Grujić and A. Ruzmaikina, Interpolation between algebraic and geometric conditions for
smoothness of the vorticity in the 3D NSE, Indiana Univ. Math. J. 53 (2004), 1073–1080.

32. S. Li, Geometric regularity criteria for incompressible Navier-Stokes equations with Navier
boundary conditions, Nonlinear Anal. 188 (2019), 202–235.

33. S. Li, On vortex alignment and boundedness of Lq norm of vorticity, ArXiv preprint: 1712.00551.
34. C. V. Tran and X. Yu, Pressure moderation and effective pressure in Navier–Stokes flows,

Nonlinearity 29 (2016): 2990–3005.
35. C. V. Tran and X. Yu, A geometrical regularity criterion in terms of velocity profiles for the

three-dimensional Navier–Stokes equations, Q. J. Mech. Appl. Math. 72 (2019), 545–562.
36. A. Vasseur, Regularity criterion for 3D Navier–Stokes equations in terms of the direction of the

velocity, Appl. Math. 54 (2009), 47–52.

D
ow

nloaded from
 https://academ

ic.oup.com
/qjm

am
/advance-article-abstract/doi/10.1093/qjm

am
/hbaa008/5841115 by guest on 20 M

ay 2020



Copyedited by: ES MANUSCRIPT CATEGORY: Research article

[14:13 12/5/2020 OP-QJMA200008.tex] QJMAM: The Quarterly Journal of Mechanics & Applied Mathematics Page: 14 1–14

14 S. LI

37. Y. Zhou, A new regularity criterion for the Navier–Stokes equations in terms of the direction of
vorticity, Monatsh. Math. 144 (2005), 251–257.

38. Z. Zhang, W. Wang, and Y. Zhou, Global regularity criterion for the Navier–Stokes equations
based on the direction of vorticity, Math. Methods Appl. Sci. 42 (2019), 7126–7134.

39. M. H. Freedman, Z.-X. He, and Z. Wang, Möbius energy of knots and unknots, Ann. Math. 139
(1994), 1–50.

40. J. O’Hara, Energy of Knots and Conformal Geometry. Series on Knots and Everything, 33.
World Scientific Publishing Co., Inc., River Edge, NJ, 2003.

41. P. Constantin and C. Foias, Navier–Stokes Equations (University of Chicago Press, Chicago, IL
1988).

42. G. P. Galdi, An Introduction to the Mathematical Theory of the Navier–Stokes Equations. Steady-
state problems, 2nd edn., Springer Monographs in Mathematics (Springer, New York 2011).

43. G. Seregin, Lecture Notes on Regularity Theory for the Navier–Stokes Equations (World
Scientific Publishing, Hackensack, NJ 2015).

D
ow

nloaded from
 https://academ

ic.oup.com
/qjm

am
/advance-article-abstract/doi/10.1093/qjm

am
/hbaa008/5841115 by guest on 20 M

ay 2020


	Regularity of Desingularized Models for Vortex Filaments in Incompressible Viscous Flows: A Geometrical Approach
	1 Introduction
	2 Main result
	3 Inequalities
	4 Proof of 2.1 theorem
	5 Concluding remarks


